Package: msentropy (via r-universe)

August 25, 2024

Type Package

Title Spectral Entropy for Mass Spectrometry Data

Version 0.1.4

Date 2023-08-07

Description Clean the MS/MS spectrum, calculate spectral entropy, unweighted entropy similarity, and entropy similarity for mass spectrometry data. The entropy similarity is a novel similarity measure for MS/MS spectra which outperform the widely used dot product similarity in compound identification. For more details, please refer to the paper: Yuanyue Li et al. (2021) ``Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification"

<doi:10.1038/s41592-021-01331-z>.

License Apache License (== 2.0)

Depends R (>= 3.5.0), Rcpp (>= 1.0.10)

Suggests testthat

LinkingTo Rcpp RoxygenNote 7.2.3

Encoding UTF-8

URL https://github.com/YuanyueLi/MSEntropy

NeedsCompilation yes

Author Yuanyue Li [aut, cre]

Maintainer Yuanyue Li liyuanyue@gmail.com>

Date/Publication 2023-08-07 23:10:02 UTC

Repository https://yuanyueli.r-universe.dev

RemoteUrl https://github.com/cran/msentropy

RemoteRef HEAD

RemoteSha e15bfa3b69440a99895f38d7acb72f17dc95b875

Contents

Description

Calculate the entropy similarity between two spectra

Usage

```
calculate_entropy_similarity(
  peaks_a,
  peaks_b,
  ms2_tolerance_in_da,
  ms2_tolerance_in_ppm,
  clean_spectra,
  min_mz,
  max_mz,
  noise_threshold,
  max_peak_num
)
```

Arguments

```
peaks_a
                  A matrix of spectral peaks, with two columns: mz and intensity
                  A matrix of spectral peaks, with two columns: mz and intensity
peaks_b
ms2_tolerance_in_da
                  The MS2 tolerance in Da, set to -1 to disable
ms2_tolerance_in_ppm
                  The MS2 tolerance in ppm, set to -1 to disable
                  Whether to clean the spectra before calculating the entropy similarity, see clean_spectrum
clean_spectra
                  The minimum mz value to keep, set to -1 to disable
min_mz
                  The maximum mz value to keep, set to -1 to disable
max_mz
noise_threshold
                  The noise threshold, set to -1 to disable, all peaks have intensity < noise_threshold
                  * max intensity will be removed
                  The maximum number of peaks to keep, set to -1 to disable
max_peak_num
```

Value

The entropy similarity

Examples

calculate_spectral_entropy

Calculate spectral entropy of a spectrum

Description

Calculate spectral entropy of a spectrum

Usage

```
calculate_spectral_entropy(peaks)
```

Arguments

peaks

A matrix of peaks, with two columns: m/z and intensity.

Value

A double value of spectral entropy.

Examples

```
mz <- c(100.212, 300.321, 535.325)
intensity <- c(37.16, 66.83, 999.0)
peaks <- matrix(c(mz, intensity), ncol = 2, byrow = FALSE)
calculate_spectral_entropy(peaks)</pre>
```

```
calculate\_unweighted\_entropy\_similarity \\ Unweighted\ entropy\ similarity\ between\ two\ spectra
```

Description

Calculate the unweighted entropy similarity between two spectra

Usage

```
calculate_unweighted_entropy_similarity(
  peaks_a,
  peaks_b,
  ms2_tolerance_in_da,
  ms2_tolerance_in_ppm,
  clean_spectra,
  min_mz,
  max_mz,
  noise_threshold,
  max_peak_num
)
```

Arguments

```
A matrix of spectral peaks, with two columns: mz and intensity
peaks_a
peaks_b
                  A matrix of spectral peaks, with two columns: mz and intensity
ms2_tolerance_in_da
                  The MS2 tolerance in Da, set to -1 to disable
ms2_tolerance_in_ppm
                  The MS2 tolerance in ppm, set to -1 to disable
                  Whether to clean the spectra before calculating the entropy similarity, see clean_spectrum
clean_spectra
min_mz
                  The minimum mz value to keep, set to -1 to disable
                  The maximum mz value to keep, set to -1 to disable
max_mz
noise_threshold
                  The noise threshold, set to -1 to disable, all peaks have intensity < noise_threshold
                  * max_intensity will be removed
max_peak_num
                  The maximum number of peaks to keep, set to -1 to disable
```

Value

The unweighted entropy similarity

clean_spectrum 5

Examples

clean_spectrum

Clean a spectrum

Description

Clean a spectrum

This function will clean the peaks by the following steps: 1. Remove empty peaks ($mz \le 0$ or intensity ≤ 0). 2. Remove peaks with $mz \ge max_mz$ or $mz < min_mz$. 3. Centroid the spectrum by merging peaks within min_ms2_difference_in_da or min_ms2_difference_in_ppm. 4. Remove peaks with intensity < noise_threshold * max_intensity. 5. Keep only the top max_peak_num peaks. 6. Normalize the intensity to sum to 1.

Note: The only one of min_ms2_difference_in_da and min_ms2_difference_in_ppm should be positive.

Usage

```
clean_spectrum(
  peaks,
  min_mz,
  max_mz,
  noise_threshold,
  min_ms2_difference_in_da,
  min_ms2_difference_in_ppm,
  max_peak_num,
  normalize_intensity
)
```

Arguments

peaks A matrix of spectral peaks, with two columns: mz and intensity min_mz The minimum mz value to keep, set to -1 to disable

max_mz The maximum mz value to keep, set to -1 to disable

msentropy_similarity

```
noise_threshold
```

The noise threshold, set to -1 to disable, all peaks have intensity < noise_threshold * max_intensity will be removed

```
min_ms2_difference_in_da
```

The minimum mz difference in Da to merge peaks, set to -1 to disable, any two peaks with mz difference < min_ms2_difference_in_da will be merged

min_ms2_difference_in_ppm

The minimum mz difference in ppm to merge peaks, set to -1 to disable, any two peaks with mz difference < min ms2 difference in ppm will be merged

max_peak_num The maximum number of peaks to keep, set to -1 to disable normalize_intensity

Whether to normalize the intensity to sum to 1

Value

A matrix of spectral peaks, with two columns: mz and intensity

Examples

msentropy_similarity Calculate spectral entropy similarity between two spectra

Description

msentropy_similarity calculates the spectral entropy between two spectra (Li et al. 2021). It is a wrapper function defining defaults for parameters and calling the calculate_entropy_similarity() or calculate_unweighted_entropy_similarity() functions to perform the calculation.

Usage

```
msentropy_similarity(
  peaks_a,
  peaks_b,
  ms2_tolerance_in_da = 0.02,
  ms2_tolerance_in_ppm = -1,
  clean_spectra = TRUE,
  min_mz = 0,
  max_mz = 1000,
  noise_threshold = 0.01,
```

msentropy_similarity 7

```
max_peak_num = 100,
weighted = TRUE,
...
)
```

Arguments

peaks_a A two-column numeric matrix with the m/z and intensity values for peaks of

one spectrum.

peaks_b A two-column numeric matrix with the m/z and intensity values for peaks of

one spectrum.

ms2_tolerance_in_da

The MS2 tolerance in Da, set to -1 to disable. Defaults to ms2_tolerance_in_da

= 0.02.

ms2_tolerance_in_ppm

The MS2 tolerance in ppm, set to -1 to disable. Defaults to ms2_tolerance_in_ppm

= -1.

clean_spectra Whether to clean the spectra before calculating the entropy similarity, see clean_spectrum().

min_mz The minimum mz value to keep, set to -1 to disable. Defaults to min_mz = 0.

max_mz The maximum mz value to keep, set to -1 to disable. Defaults to max_mz = 1000.

noise_threshold

The noise threshold, set to -1 to disable, all peaks have intensity < noise_threshold * max_intensity will be removed. Defaults to noise_threshold = 0.01, thus, by default, all peaks with an intensity less than 1% of the maximum intensity of

a spectrum will be removed.

max_peak_num The maximum number of peaks to keep, set to -1 to disable. Defaults to max_peak_num

= 1000.

weighted logical(1) whether the weighted or unweighted entropy similarity should be

calculated. Defaults to weighted = TRUE, thus calculate_entropy_similarity()

is used for the calculation. For weighted = FALSE calculate_unweighted_entropy_similarity()

is used instead.

... Optional additional parameters (currently ignored)

Value

The entropy similarity

References

Li, Y., Kind, T., Folz, J. et al. (2021) Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. Nat Methods 18, 1524-1531. doi: 10.1038/s41592-02101331z.

8 msentropy_similarity

Examples

```
peaks_a <- cbind(mz = c(169.071, 186.066, 186.0769),
    intensity = c(7.917962, 1.021589, 100.0))
peaks_b <- cbind(mz = c(120.212, 169.071, 186.066),
    intensity <- c(37.16, 66.83, 999.0))
msentropy_similarity(peaks_a, peaks_b, ms2_tolerance_in_da = 0.02)</pre>
```

Index